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• Observation: The Lp norm can be replaced by the weak norm Lp,∞.
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Another possibility is to use the Taylor expansion of ecf ...
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∫
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|f − fQ| dy ≤ 2nL & |

⋃
jQj| <

|Q|
L

Now, given the C-Z decomposition of the cube Q, we perform the classical C-Z
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where the functions gQ and bQ are defined as usual. We have that
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