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• Observation: The Lp norm can be replaced by the weak norm Lp,∞.
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Another possibility is to use the Taylor expansion of ecf ...
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∫
Qi
|
∑
j

bQj |
p dx

=
∑
i

∫
Qi
|bQi|

p dx

=
∑
i

|Qi|
|Qi|

∫
Qi

∣∣∣f − fQi∣∣∣p dx
≤ Xp

∑
i

|Qi| ≤ Xp|Q|
L
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and this is the desired inequality:(
1

|Q|

∫
Q
|f − fQ|p dx

)1
p

≤ c p
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